What are the nucleus accumbens and amygdala part of?

References

  • Abraham, W. C., & Goddard, G. V. (1983). Asymmetric relationships between homosynaptic long-term potentiation and heterosynaptic long-term depression. Nature, 305, 717–719.

    PubMed  Google Scholar 

  • Adolphs, R., Tranel, D., Damasio, H., & Damasio, A. R. (1995). Fear and the human amygdala. Journal of Neuroscience, 15, 5879–5891.

    PubMed  Google Scholar 

  • Alvarez, P., Zola-Morgan, S., & Squire, L. R. (1995). Damage to the hippocampal region produces long-lasting memory impairment in monkeys. Journal of Neuroscience, 15, 3796–3807.

    PubMed  Google Scholar 

  • Arts, M. P. M., & Groenewegen, H. J. (1992). Relationships of the dendritic arborations of ventral striatomesencephalic projection neurons with bounderies of striatal compartments. An in vitro intracellular labelling study in the rat. European Journal of Neuroscience, 4, 574–588.

    PubMed  Google Scholar 

  • Beijer, A. V. J., & Groenewegen, H. J. (1996). Specific anatomical relationships between hippocampal and basal amygdaloid afferents and different populations of projection neurons in the nucleus accumbens of rats. Society for Neuroscience Abstracts, 22, 413.

    Google Scholar 

  • Berendse, H. W., Groenewegen, H. J., & Lohman, A. H. M. (1992). Compartmental distribution of ventral striatal neurons projecting to the mesencephalon in the rat. Journal of Neuroscience, 12, 2079–2103.

    PubMed  Google Scholar 

  • Blaha, C. D., Yang, C. R., Floresco, S. B., Barr, A. M., & Phillips, A. G. (1997). Stimulation of the ventral subiculum of the hippocampus evokes glutamate receptor-mediated changes in dopamine efflux in the rat nucleus accumbens. European Journal of Neuroscience, 9, 902–911.

    PubMed  Google Scholar 

  • Bliss, T. V. P., & Collingridge, G. L. (1993). A synaptic model of memory: Long-term potentiation in the hippocampus. Nature, 361, 31–39.

    PubMed  Google Scholar 

  • Boeijinga, P. H., Mulder, A. B., Pennartz, C. M. A., Manshanden, I., & Lopes da Silva, F. H. (1993). Response of the nucleus accumbens following fornix/fimbria stimulation of the rat. Identification and long-term potentiation of mono- and polysynaptic pathways. Neuroscience, 53, 1049–1058.

    PubMed  Google Scholar 

  • Boeijinga, P. H., Pennartz, C. M. A., & Lopes da Silva, F. H. (1990). Paired-pulse facilitation in the nucleus accumbens following stimulation of the subicular inputs in the rat. Neuroscience, 35, 301–311.

    PubMed  Google Scholar 

  • Brog, J. S., Salyapongse, A., Deutch, A. Y., & Zahm, D. S. (1993). The patterns of afferent innervation of the core and shell of the “accumbens” part of the rat ventral striatum: Immunohistochemical detection of retrogradely transported fluoro-gold. Journal of Comparative Neurology, 338, 255–278.

    PubMed  Google Scholar 

  • Cador, M., Robbins, T. W., & Everitt, B. J. (1989). Involvement of the amygdala in stimulus-reward associations: Interactions with the ventral striatum. Neuroscience, 30, 77–86.

    PubMed  Google Scholar 

  • Calloway, C., Hakan, R. L., Henriksen, S. J. (1991). Distribution of amygdala input to the nucleus septi: An electrophysiological investigation. Journal of Neural Transmission, 83, 215–225.

    Google Scholar 

  • Chang, H. T., & Kitai, S. T. (1986). Intracellular recordings from rat nucleus accumbens neurons in vitro. Brain Research, 366, 392–396.

    PubMed  Google Scholar 

  • Chronister, R. B., Sikes, R. W., Trow, T. W., & DeFrance, J. F. (1981). The organization of the nucleus accumbens. In R. B. Chronister & J. F. DeFrance (Eds.), The neurobiology of the nucleus accumbens (pp. 97–146). Brunswick, ME: Haer Institute for Physiological Research.

    Google Scholar 

  • Cowan, R. L., Wilson, C. J., Emson, P. C., & Heizmann, C. W. (1990). Parvalbumin-containing GABAergic interneurons in the rat neostriatum. Journal of Comparative Neurology, 302, 197–205.

    PubMed  Google Scholar 

  • Davies, M. (1992). The role of the amygdala in conditioned fear. In J. P. Aggleton (Ed.), The amygdala: Neurobiological aspects of emotion, memory and mental dysfunction (pp. 255–305). New York: Wiley.

    Google Scholar 

  • DeFrance, J. F., Marchand, J. F., Sikes, R. W., Chronister, R. B., & Hubbard, J. I. (1985). Characterization of fimbria input to nucleus accumbens. Journal of Neurophysiology, 54, 1553–1567.

    PubMed  Google Scholar 

  • DeFrance, J. F., Marchand, J., Stanley, J. C., Sikes, R. W., & Chronister, R. B. (1980). Convergence of excitatory amygdaloid and hippocampal input in the nucleus accumbens septi. Brain Research, 185, 183–186.

    PubMed  Google Scholar 

  • Deutch, A. Y., & Cameron, D. S. (1992). Pharmacological characterization of dopamine systems in the nucleus accumbens core and shell. Neuroscience, 46, 49–56.

    PubMed  Google Scholar 

  • Eichenbaum, H., & Cohen, N. J. (1988). Representation in the hippocampus: What do hippocampal neurons code? Trends in Neurosciences, 11, 244–248.

    PubMed  Google Scholar 

  • Everitt, B. J., Morris, K. A., O’Brien, A., & Robbins, T. W. (1991). The basolateral amygdala-ventral striatal system and conditioned place preference: Further evidence of limbic-striatal interactions underlying reward-related processes. Neuroscience, 42, 1–18.

    PubMed  Google Scholar 

  • Feasey-Truger, K. J., & ten Bruggencate, G. (1994). The NMDA receptor antagonist CPP suppresses long-term potentiation in the rat hippocampal–accumbens pathway in vivo. European Journal of Neuroscience, 6, 1241–1254.

    Google Scholar 

  • Fernandez de Molina, A., & Garcia-Sanchez, J. L. (1967). The properties of the stria terminalis fibers. Physiology Behavior, 2, 225–227.

    Google Scholar 

  • Finch, D. M. (1996). Neurophysiology of converging synaptic inputs from rat prefrontal cortex, amygdala, midline thalamus, and hippocampal formation onto single neurons of the caudate/putamen and nucleus accumbens. Hippocampus, 6, 495–512.

    PubMed  Google Scholar 

  • Finch, D. M., Gigg, J., Tan, A. M., & Kosoyan, O. P. (1995). Neurophysiology and neuropharmacology of projections from entorhinal cortex to striatum in the rat. Brain Research, 670, 233–247.

    PubMed  Google Scholar 

  • Gaffan, D., Murray, E. A., & Fabre-Thorpe, M. (1993). Interaction of the amygdala with the frontal lobe in reward memory. European Journal of Neuroscience, 5, 968–975.

    PubMed  Google Scholar 

  • Gigg, J., Tan, A. M., & Finch, D. M. (1994). Glutamatergic hippocampal formation projections to prefrontal cortex in the rat are regulated by GABAergic inhibition and show convergence with glutamatergic projections from the limbic thalamus. Hippocampus, 4, 189–198.

    PubMed  Google Scholar 

  • Groenewegen, H. J., Becker, N. E. H. M., & Lohman, A. H. M. (1980). Subcortical afferents to the nucleus accumbens septi in the cat, studied with retrograde axonal transport of horseradish peroxidase and bisbenzimid. Neuroscience, 5, 1903–1916.

    PubMed  Google Scholar 

  • Groenewegen, H. J., Berendse, H. W., Wolters, J. G., & Lohman, A. H. M. (1990). The anatomical relationship of the prefrontal cortex with the striatopallidal system, the thalamus and the amygdala: Evidence for a parallel organization. In H. B. M. Uijlings, C. G. VanEden, J. P. C. DeBruin, M. A. Corner, & M. P. G. Feenstra (Eds.), The prefrontal cortex: Its structure, function and pathology (Progress in Brain Research, Vol. 85, pp. 95–118). Amsterdam: Elsevier.

    Google Scholar 

  • Groenewegen, H. J., Room, P., Witter, M. P., & Lohman, A. H. M. (1982). Cortical afferents of the nucleus accumbens in the cat: Studied with anterograde and retrograde transport techniques. Neuroscience, 7, 977–996.

    PubMed  Google Scholar 

  • Groenewegen, H. J., Vermeulen-Van der Zee, E., te Kortschot, A., & Witter, M. P. (1987). Organization of the projections from the subiculum to the ventral striatum in the rat: A study using anterograde transport of Phaseolus vulgaris-leucoagglutinin. Neuroscience, 23, 103–120.

    PubMed  Google Scholar 

  • Groenewegen, H. J., Wright, C. I., & Beijer, A.V. J. (1996). The nucleus accumbens: Gateway for limbic structures to reach the motor system? In G. Holstege, R. Bandler, & C. B. Saper (Eds.), The emotional motor system (Progress in Brain Research, Vol. 107, pp. 485–511). Amsterdam: Elsevier.

    Google Scholar 

  • Hakan, R. L., & Henriksen, S. J. (1987). Systemic opiate administration has heterogeneous effects on activity recorded from nucleus accumbens neurons in vivo. Neuroscience Letters, 83, 307–312.

    PubMed  Google Scholar 

  • Heimer, L., Alheid, G. F., de Olmos, J. S., Groenewegen, H. J., Haber, S. N., Harlan, R. E., & Zahm, D. S. (1997). The accumbens, beyond the core–shell dichotomy. Journal of Neuropsychiatry & Clinical Neurosciences, 9, 354–381.

    Google Scholar 

  • Heimer, L., de Olmos, J. S., Alheid, G. F., Pearson, J., Sakamoto, N., Marksteiner, J., & Switzer, III, R. C. (in press). The human basal ganglia, Part 2. In F. Bloom, A. Björklund, & T. Hökfelt (Eds.), Handbook of chemical neuroanatomy (Vol. 15). Amsterdam: Elsevier.

  • Heimer, L., & Wilson, R. D. (1975). The subcortical projections of the allocortex: Similarities in the neural associations of the hippocampus, the piriform cortex, and the neocortex. In M. Santini (Ed.), Golgi Centennial Symposium: Perspectives in Neurobiology (pp. 177–193). New York: Raven.

    Google Scholar 

  • Heimer, L., Zahm, D. S., & Alheid, G. F. (1995). Basal ganglia. In G. Paxinos (Ed.), The rat nervous system (2nd ed., pp. 579–628). Sydney: Academic Press.

    Google Scholar 

  • Heimer, L., Zahm, D. S., Churchill, L., Kalivas, P. W., & Wohltmann, C. (1991). Specificity in the projection patterns of the accumbal core and shell in the rat. Neuroscience, 41, 89–125.

    PubMed  Google Scholar 

  • Herkenham, M., Moon-Edley, S., & Stuart, J. (1984). Cell clusters in the nucleus accumbens of the rat, and the mosaic relationship of opiate, acetylcholinesterase, and subcortical afferent terminations. Neuroscience, 11, 561–593.

    PubMed  Google Scholar 

  • Johnson, L. R., Aylward, R. L., Hussain, Z., & Totterdell, S. (1994). Input from the amygdala to the rat nucleus accumbens: Its relationship with tyrosine hydroxylase immunoreactivity and identified neurons. Neuroscience, 61, 851–865.

    PubMed  Google Scholar 

  • Jongen-RÊlo, A., Groenewegen, H. J., & Voorn, P. (1993). Evidence for a multicompartmental histochemical organization of the nucleus accumbens in the rat. Journal of Comparative Neurology, 337, 267–276.

    PubMed  Google Scholar 

  • Jongen-RÊlo, A., Voorn, P., & Groenewegen, H. J. (1994). Immunohistochemical characterization of the shell and core territories of the nucleus accumbens in the rat. European Journal of Neuroscience, 6, 1255–1264.

    PubMed  Google Scholar 

  • Kelley, A. E., & Domesick, V. B. (1982). The distribution of the projection from the hippocampal formation to the nucleus accumbens in the rat: An anterograde and retrograde-horseradish peroxidase study. Neuroscience, 7, 2321–2335.

    PubMed  Google Scholar 

  • Kelley, A. E., Domesick, V. B., & Nauta, W. J. H. (1982). The amygdalastriatal projection in the rat—An anatomical study by anterograde and retrograde methods. Neuroscience, 7, 615–630.

    PubMed  Google Scholar 

  • Kelley, A. E., Smith-Roe, S. L., & Holahan, M. R. (1997). Response-reinforcement learning is dependent on N-methyl-d-aspartate receptor activation in the nucleus accumbens core. Proceedings of the National A cademy of Sciences, 94, 12174–12179.

    Google Scholar 

  • Killcross, S., Robbins, T. W., & Everitt, B. J. (1997). Different types of fear-conditioned behaviour mediated by separate nuclei within amygdala. Nature, 388, 377–380.

    PubMed  Google Scholar 

  • Kita, H., & Kitai, S. T. (1990). Amygdaloid projections to the frontal cortex and striatum in the rat. Journal of Comparative Neurology, 298, 40–49.

    PubMed  Google Scholar 

  • Kita, H., Kosaka, T., & Heizmann, C. W. (1990). Parvalbuminimmunoreactive neurons in the rat neostriatum: A light and electron microscopic study. Brain Research, 536, 1–15.

    PubMed  Google Scholar 

  • Kombian, S. B., & Malenka, R. C. (1994). Simultaneous LTP of non-NMDA and LTD of NMDA-receptor mediated responses in the nucleus accumbens. Nature, 368, 242–246.

    PubMed  Google Scholar 

  • Koob, G. F. (1992). Drugs of abuse: Anatomy, pharmacology and function of reward pathways. Trends in Pharmacological Sciences, 13, 177–184.

    PubMed  Google Scholar 

  • Kuhnt, U., & Voronin, L. L. (1994). Interaction between paired pulse facilitation and long-term potentiation in area CA1 of guinea-pig hippocampal slices: Application of quantal analysis. Neuroscience, 62, 391–397.

    PubMed  Google Scholar 

  • LeDoux, J. E. (1993). Emotional memory systems in the brain. Behavioural Brain Research, 58, 69–79.

    PubMed  Google Scholar 

  • Lopes da Silva, F. H. (1996). The generation of electric and magnetic signals of the brain by local networks. In R. Gregor & U. Windhorst (Eds.), Comprehensive human physiology (Vol. 1, pp. 509–531). Berlin: Springer-Verlag.

    Google Scholar 

  • Lopes da Silva, F. H., Arnolds, D. E., & Neijt, H. C. (1984). A functional link between the limbic cortex and ventral striatum: Physiology of the subiculum–accumbens pathway. Experimental Brain Research, 55, 205–214.

    Google Scholar 

  • McDonald, A. J. (1991). Topographic organization of amygdaloid projections to the caudate putamen, nucleus accumbens, and related striatal-like areas of the rat brain. Neuroscience, 44, 15–33.

    PubMed  Google Scholar 

  • McNaughton, B. L., Barnes, C. A., Gerrard, J. L., Gothard, K., Jung, M. W., Knierim, J. J., Kudrimoti, H., Qin, Y., Skaggs, W. E., Suster, M., & Weaver, K. L. (1996). Deciphering the hippocampal polyglot: The hippocampus as a path integration system. Journal of Experimental Biology, 199, 173–185.

    PubMed  Google Scholar 

  • Meredith, G. E., Pennartz, C. M. A., & Groenewegen, H. J. (1993). The cellular framework for chemical signalling in the nucleus accumbens. In G. W. Arbuthnott & P. C. Emson (Eds.), Chemical signalling in the basal ganglia (Progress in brain research, Vol. 99, pp. 3–24). Amsterdam: Elsevier.

    Google Scholar 

  • Mogenson, G. J., Jones, D. L., & Yim, C. Y. (1980). From motivation to action: Functional interface between the limbic system and the motor system. Progress in Psychobiology, 14, 60–97.

    Google Scholar 

  • Mulder, A. B., Arts, M. P. M., & Lopes da Silva, F. H. (1997). Short-and long-term plasticity of the hippocampus to nucleus accumbens and prefrontal cortex pathways in the rat, in vivo. European Journal of Neuroscience, 9, 1603–1611.

    PubMed  Google Scholar 

  • Mulder, A. B., Gijsberti Hodenpijl, M., & Lopes da Silva, F. H. (1995). Electrophysiology of the hippocampal and basolateral amygdaloid inputs to the nucleus accumbens of the rat: Patterns of convergence and segregation. European Journal of Neuroscience, 8, 151.

    Google Scholar 

  • Mulder, A. B., Gijsberti Hodenpijl, M., & Lopes da Silva, F. H. (1998). Electrophysiology of the hippocampal and amygdaloid projections to the nucleus accumbens of the rat: Convergence, segregation and interaction of inputs. Journal of Neuroscience, 18, 5095–5102.

    PubMed  Google Scholar 

  • Mulder, A. B., Zuiderwijk, M., & Lopes da Silva, F. H. (1995). Enhancement of long-term potentiation in the nucleus accumbens by removal of GABAergic inhibition. Pflügers Archives, European Journal of Physiology, 430, R177.

    Google Scholar 

  • Nauta, W. J. H., Smith, G. P., Faull, R. L., & Domesick, V. B. (1978). Efferent connections and nigral afferents of the nucleus accumbens in the rat. Neuroscience, 3, 385–401.

    PubMed  Google Scholar 

  • Newman, R., & Winans, S. S. (1980). An experimental study of the ventral striatum of the golden hamster: I. Neuronal connections of the nucleus accumbens. Journal of Comparative Neurology, 191, 167–192.

    PubMed  Google Scholar 

  • Nishijo, H., Ono, T., & Nishino, H. (1988). Single neuron responses in amygdala of alert monkey during complex sensory stimulation with affective significance. Journal of Neuroscience, 8, 3570–3583.

    PubMed  Google Scholar 

  • O’Donnell, P., & Grace, A. A. (1995). Synaptic interactions among excitatory afferents to nucleus accumbens neurons: Hippocampal gating of prefrontal cortical input. Journal of Neuroscience, 15, 3622–3639.

    PubMed  Google Scholar 

  • O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34, 171–175.

    PubMed  Google Scholar 

  • O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Oxford University Press, Clarendon Press.

    Google Scholar 

  • Parkinson, J. A., Olmstead, M. C., Burns, L. H., Robbins, T. W., & Everitt, B. J. (1999). Dissociation in effects of lesions of the nucleus accumbens core and shell on appetitive Pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity by d-amphetamine. Journal of Neuroscience, 19, 2401–2411.

    PubMed  Google Scholar 

  • Pennartz, C. M. A., Ameerun, R. F., & Lopes da Silva, F. H. (1993). Synaptic plasticity in an in vitro slice preparation of the rat nucleus accumbens. European Journal of Neuroscience, 5, 107–117.

    PubMed  Google Scholar 

  • Pennartz, C. M. A., Boeijinga, P. H., Kitai, S. T., & Lopes da Silva, F. H. (1991). Contribution of NMD A receptors to postsynaptic potentials and paired-pulse facilitation in identified neurons of the rat nucleus accumbens in vitro. Experimental Brain Research, 86, 190–198.

    Google Scholar 

  • Pennartz, C. M. A., Groenewegen, H. J., & Lopes da Silva, F. H. (1994). The nucleus accumbens as a complex of functionally distinct neuronal ensembles: An integration of behavioural, electrophysiological and anatomic data. Progress in Neurobiology, 42, 719–761.

    PubMed  Google Scholar 

  • Pennartz, C. M. A., & Kitai, S. T. (1991). Hippocampal inputs to identified neurons in an in vitro slice preparation of the rat nucleus accumbens: Evidence for feed-forward inhibition. Journal of Neuroscience, 11, 2838–2847.

    PubMed  Google Scholar 

  • Phillipson, O. T., & Griffiths, A. C. (1985). The topographic order of inputs to the nucleus accumbens in the rat. Neuroscience, 16, 275–296.

    PubMed  Google Scholar 

  • Ragsdale, C. W., & Graybiel, A. M. (1988). Fibers from the basolateral nucleus of the amygdala selectively innervate striosomes in the caudate nucleus of the cat. Journal of Comparative Neurology, 269, 506–522.

    PubMed  Google Scholar 

  • Robbins, T. W., & Everitt, B. J. (1996). Neurobehavioural mechanisms of reward and motivation. Current Opinion in Neurobiology, 6, 228–236.

    PubMed  Google Scholar 

  • Rogan, M., StÄubli, U. V., & LeDoux, J. E. (1997). Fear conditioning induces associative long-term potentiation in the amygdala. Nature, 390, 604–607.

    PubMed  Google Scholar 

  • Russchen, F. T., Bakst, I., Amaral, D. G., & Price, J. L. (1985). The amygdalostriatal projections in the monkey. An anterograde tracing study. Brain Research, 329, 241–257.

    PubMed  Google Scholar 

  • Scheel-Krüger, J., & Willner, P. (1991). The mesolimbic system: Principles of operation. In P. Willner & J. Scheel-Krüger (Eds.), The mesolimbic dopamine system: From motivation to action (pp. 559–597). Chichester, U.K.: Wiley.

    Google Scholar 

  • Shinonaga, Y., Takada, M., & Mizuno, N. (1994). Topographic organization of collateral projections from the basolateral amygdaloid nucleus to both the prefrontal cortex and the nucleus accumbens. Neuroscience, 58, 389–397.

    PubMed  Google Scholar 

  • Stratford, T. R., & Kelley, A. E. (1997). GABA in the nucleus accumbens shell participates in the central regulation of feeding behavior. Journal of Neuroscience, 17, 4434–4440.

    PubMed  Google Scholar 

  • Totterdell, S., & Meredith, G. E. (1997). Topographical organization of projections from the entorhinal cortex to the striatum of the rat. Neuroscience, 78, 715–729.

    PubMed  Google Scholar 

  • Totterdell, S., & Smith, A. D. (1989). Convergence of hippocampal and dopaminergic input onto identified neurons in the nucleus accumbens of the rat. Journal of Chemical Neuroanatomy, 2, 285–298.

    PubMed  Google Scholar 

  • Uchimura, N., Cherubini, E., & North, R. A. (1989). Inward rectification in rat nucleus accumbens neurons. Journal of Neurophysiology, 62, 1280–1286.

    PubMed  Google Scholar 

  • Voorn, P., Gerfen, C. R., & Groenewegen, H. J. (1989). Compartmental organization of the ventral striatum of the rat: Immunohistochemical distribution of enkephalin, substance P, dopamine and calcium binding protein. Journal of Comparative Neurology, 289, 189–201.

    PubMed  Google Scholar 

  • Weiner, I., Gal, G., Rawlins, J. N., & Feldon, J. (1996). Differential involvement of the shell and core subterritories of the nucleus accumbens in latent inhibition and amphetamine-induced activity. Behavioural Brain Research, 81, 123–134.

    PubMed  Google Scholar 

  • Wiener, S. I. (1996). Spatial, behavioral and sensory correlates of hippocampal CA1 complex spike cell activity: Implications for information processing functions. Progress in Neurobiology, 49, 335–361.

    PubMed  Google Scholar 

  • Wilson, C. J., & Kawaguchi, Y. (1996). The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. Journal of Neuroscience, 16, 2397–2410.

    PubMed  Google Scholar 

  • Wilson, M. A., & McNaughton, B. L. (1993). Dynamics of the hippocampal ensemble code for space. Science, 261, 1055–1058.

    PubMed  Google Scholar 

  • Wright, C. I., Beijer, A. V. J., & Groenewegen, H. J. (1996). Basal amygadaloid complex afferents to the rat nucleus accumbens are compartmentally organized. Journal of Neuroscience, 16, 1877–1893.

    PubMed  Google Scholar 

  • Wright, C. I., & Groenewegen, H. J. (1995). Patterns of convergence and segregation in the medial nucleus accumbens of the rat: Relationships of prefrontal cortical, midline thalamic and basal amygdaloid afferents. Journal of Comparative Neurology, 361, 383–403.

    PubMed  Google Scholar 

  • Wright, C. I., & Groenewegen, H. J. (1996). Patterns of overlap and segregation between insular cortical, intermediodorsal thalamic and basal amygdaloid afferents in the nucleus accumbens of the rat. Neuroscience, 73, 359–373.

    PubMed  Google Scholar 

  • Yang, C. R., & Mogenson, G. J. (1984). Electrophysiological responses of neurons in the nucleus accumbens to hippocampal stimulation and the attenuation of the excitatory responses by the mesolimbic dopaminergic system. Brain Research, 324, 69–84.

    PubMed  Google Scholar 

  • Yang, C. R., & Mogenson, G. J. (1985). An electrophysiological study of the neural projections from the hippocampus to the ventral pallidum and the subpallidal areas by way of the nucleus accumbens. Neuroscience, 15, 1015–1024.

    PubMed  Google Scholar 

  • Yim, C. Y., & Mogenson, G. J. (1982). Response of nucleus accumbens neurons to amygdala stimulation and its modification by dopamine. Brain Research, 239, 401–415.

    PubMed  Google Scholar 

  • Yim, C. Y., & Mogenson, G. J. (1986). Mesolimbic dopamine projection modulates amygdala-evoked EPSP in nucleus accumbens neurons: An in vivo study. Brain Research, 369, 347–352.

    PubMed  Google Scholar 

  • Yim, C. Y., & Mogenson, G. J. (1988). Neuromodulatory action of dopamine in the nucleus accumbens: An in vivo intracellular study. Neuroscience, 26, 403–415.

    PubMed  Google Scholar 

  • Yim, C. Y., & Mogenson, G. J. (1989). Low doses of nucleus accumbens dopamine modulate amygdala suppression of spontaneous exploratory activity in rats. Brain Research, 477, 202–210.

    PubMed  Google Scholar 

  • ZÀborszky, L., Alheid, G. F., Beinfeld, M. C., Eiden, L. E., Heimer, L., & Palkovits, M. (1985). Cholecystokinin innervation of the ventral striatum: A morphological and radioimmunological study. Neuroscience, 14, 427–453.

    PubMed  Google Scholar 

  • Zahm, D. S., & Brog, J. S. (1992). On the significance of subterritories in the “accumbens” part of the rat ventral striatum. Neuroscience, 50, 751–767.

    PubMed  Google Scholar 

  • Zahm, D. S., & Heimer, L. (1993). Specificity in the efferent projections of the nucleus accumbens in the rat: Comparison of the rostral pole projection patterns with those of the core and shell. Journal of Comparative Neurology, 327, 220–232.

    PubMed  Google Scholar 

  • Zola-Morgan, S., Squire, L. R., Alvarez-Royo, P., & Clower, R. P. (1991). Independence of memory functions and emotional behaviour: Separate contributions of the hippocampal formation and the amygdala. Hippocampus, 1, 207–220.

    PubMed  Google Scholar 

  • Zola-Morgan, S., Squire, L. R., & Amaral, D. G. (1986). Human amnesia and the medial temporal region: Enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. Journal of Neuroscience, 6, 2950–2967.

    PubMed  Google Scholar 

  • Zola-Morgan, S., Squire, L. R., & Amaral, D. G. (1989). Lesions of the hippocampal formation but not lesions of the fornix or the mammillary nuclei produce long-lasting memory impairments in monkeys. Journal of Neuroscience, 9, 898–913.

    PubMed  Google Scholar 

Download references

What is the nucleus accumbens a part of?

The nucleus accumbens (NAc) is a major component of the ventral striatum and has long been thought to be a key structure involved in mediating motivational and emotional processes, the limbic-motor interface, and the effects of certain psychoactive drugs.

Is nucleus accumbens part of limbic system?

The nucleus accumbens (NAcc) is a central component of the limbic system of the brain.

Is the nucleus accumbens part of the hypothalamus?

The nucleus accumbens (NAc or NAcc; also known as the accumbens nucleus, or formerly as the nucleus accumbens septi, Latin for "nucleus adjacent to the septum") is a region in the basal forebrain rostral to the preoptic area of the hypothalamus.

Is nucleus accumbens part of hippocampus?

The nucleus accumbens, a recipient of direct projections from both the hippocampus and orbitofrontal cortex, is known to contribute to these aspects of decision-making.