Công thức nghiệm của phương trình lượng giác cos x = cos alpha là

Cùng tìm hiểu phương trình lượng giác qua bài viết cùng bài giảng dưới đây nhé!.

Các dạng phương trình lượng giác

Phương trình sinx = m

Nếu \[\left | m \right |\]>1: Phương trình vô nghiệm

Nếu \[\left | m \right |\] \[\leq\] 1 thì chọn 1 góc \[\alpha\] sao cho \[\sin \alpha = m\].

Khi đó nghiệm của phương trình là \[\left\{\begin{matrix} x = \alpha + k2\pi & \\ x = \pi – \alpha +k2\pi & \end{matrix}\right.\] với \[k \epsilon \mathbb{Z}\]

Phương trình cosx = m

Nếu \[\left | m \right |\]>1: Phương trình vô nghiệm

Nếu \[\left | m \right |\] \[\leq\] 1 thì chọn 1 góc \[\alpha\] sao cho \[\cos \alpha = m\] .

Khi đó nghiệm của phương trình là \[\left\{\begin{matrix} x = \alpha + k2\pi & \\ x = – \alpha + k2\pi & \end{matrix}\right.\] với \[k \epsilon \mathbb{Z}\]

Phương trình tanx = m

Chọn góc \[\alpha\] sao cho \[\tan \alpha = m\].

Khi đó phương trình luôn có nghiệm với mọi m.

\[\tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi [k \epsilon \mathbb{Z}]\]

Hoặc \[\tan x = m \Leftrightarrow m – \arctan m + k\pi\] [m bất kỳ]

Chú ý: \[\tan x = 0 \Leftrightarrow x = k\pi\], \[\tan x\] không xác định khi \[x = \frac{\pi }{2} + k\pi\]

Phương trình cot[x] = m

Chọn góc \[\alpha\] sao cho \[\csc \alpha = m\].

Khi đó phương trình luôn có nghiệm với mọi m.

\[\csc x = \csc \alpha \Leftrightarrow x = \alpha + k\pi [k\epsilon \mathbb{Z}]\] Hoặc \[\cot x = m \Leftrightarrow m = \textrm{arccsc}m + k\pi\] [m bất kỳ]

Chú ý: \[\csc x = 0 \Leftrightarrow x = \frac{\pi }{2} + k\pi\],

\[\csc x\] không xác định khi \[x = k\pi\]

Vòng tròn lượng giác cho các bạn tham khảo:

Phương trình lượng giác chứa tham số

Phương trình lượng giác chứa tham số dạng \[a\sin x + b \cos x = c\] có nghiệm khi và chỉ khi \[a^{2} + b^{2} \geq c^{2}\]

Để giải phương trình lượng giác chứa tham số có hai cách làm phổ biến là:

  • Thứ nhất đưa về PT lượng giác cơ bản
  • Thứ hai sử dụng phương pháp khảo sát hàm

Phương pháp 1: Đưa về dạng phương trình lượng giác cơ bản

  • Điều kiện có nghiệm của phương trình lượng giác
  • Kết hợp những kiến thức đã học đưa ra các điều kiện làm cho phương trình dạng cơ bản có nghiệm thỏa điều kiện cho trước

Ví dụ: Xác định m để phương trình \[[m^{2} – 3m + 2]\cos ^{2}x = m[m-1]\] [1] có nghiệm.

Cách giải

\[[1]\Leftrightarrow [m-1][m-2]\cos ^{2}x = m [m-1]\] [1’]

Khi m = 1: [1] luôn đúng với mọi \[x\epsilon \mathbb{R}\]

Khi m = 2: [1] vô nghiệm

Khi \[m\neq 1; m\neq 2\] thì:

[1’] \[\Leftrightarrow [m-2]\cos ^{2}x = m \Leftrightarrow \cos ^{2}x = \frac{m}{m-2}\]  [2]

Khi đó [2] có nghiệm \[\Leftrightarrow 0\leq \frac{m}{m-2}\leq 1\Leftrightarrow m\leq 0\]

Vậy [1] có nghiệm khi và chỉ khi m = 1, \[m\leq 0\]

Phương pháp 2: Sử dụng phương pháp khảo sát

Giả sử phương trình lượng giác chứa tham số m có dạng: g[x,m] = 0 [1]. Xác định m để phương trình [1] có nghiệm \[x\epsilon D\]

Phương pháp:

  • Đặt ẩn phụ t = h[x] trong đó h[x] là 1 biểu thức thích hợp trong phương trình [1]
  • Tìm miền giá trị [điều kiện] của t trên tập xác định D. Gọi miền giá trị của t là D1
  • Đưa phương trình [1] về phương trình f[m,t] = 0
  • Tính f’[m, t] và lập bảng biến thiên trên miền D1
  • Căn cứ vào bảng biến thiên và kết quả của bước 4 mà các định giá trị của m.

Trên đây là bài tổng hợp kiến thức về phương trình lượng giác của DINHNGHIA.VN. Nếu có góp ý hay băn khoăn thắc mắc gì các bạn bình luận bên dưới nha.Cảm ơn các bạn! Nếu thấy hay thì chia sẻ nhé ^^

Xem chi tiết qua bài giảng dưới đây nhé:



[Nguồn: www.youtube.com]

Please follow and like us:

trong: Toán học, Toán học lớp 11, Đại số

Xem mã nguồn

  • m
    [-1;1] => phương trình vô nghiệm
  • m ∈ [-1;1] thì:
  • sinx=sinα [α = SHIFT sin]
x = α + k2.π hoặc x = pi - α + k2.π [α: rad, k∈Z] x = a + k.360° hoặc x = 180° - a + k.360° [a: độ°, k∈Z]
  • Nếu m không là "giá trị đặc biệt" thì:
  • x = arcsinm + k2.pi [arc = SHIFT sin]
  • x = pi - arcsinm + k2.pi
  • sinx = 1 x=
  • sinx = -1 x=
  • sinx = 0 x=k.pi
  • m [-1;1] => phương trình vô nghiệm
  • m ∈ [-1;1] thì:
  • cosx=cosα [α = SHIFT sin]
x = ±α + k2.pi [α: rad, k∈Z] x = ±a + k.360° [a: độ°, k∈Z]
  • Nếu m không là "giá trị đặc biệt" thì:
  • x = ±arccosm + k2.pi [arc = SHIFT cos]
  • cosx = 1 x=
  • cosx = -1 x=
  • cosx = 0 x=
  • tanx=tanα [α = SHIFT tan]

x = α + k.pi [α: rad, k∈Z]

x = a + k.360° [α: độ°, k∈Z]

  • Nếu m "không là giá trị đặc biệt thì

cotx=m

  • cotx=cotα [α = SHIFT tan[1/m]]

x = α + k.pi [α: rad, k∈Z]

x = a + k.360° [α: độ°, k∈Z]

  • Nếu m "không là giá trị đặc biệt thì


Xem lại các giá trị lượng giác của các góc, cung đặc biệt:

Một số dạng toán

Biến đổi

  • sinf[x] = -sing[x] = sin[-g[x]]
  • sinf[x] = cosg[x] → sinf[x] = sin[pi/2 - g[x]]
  • sinf[x] = -cosg[x] → cosg[x] = -sinf[x] = sin[-f[x]] → cosg[x] = cos[pi/2 - f[x]]
  • Khi có
    , ta thường "hạ bậc tăng cung".

Tìm nghiệm và số nghiệm

1] Giải phương trình A với x ∈ a.

  • Trước hết tìm họ nghiệm của phương trình a.
  • Xét x trong a. Lưu ý k ∈ Z. Khi tìm được k, quay lại họ nghiệm để tìm ra nghiệm x.

2] Tìm số nghiệm k

  • Các bước tương tự như trên.
  • Tìm được k → số nghiệm.

Tìm giâ trị lớn nhất và nhỏ nhất

Tìm nghiệm âm lớn nhất và nghiệm dương nhỏ nhất

1] Với nghiệm âm lớn nhất

  • Xét x < 0 [k ∈ Z]
  • Thay vào họ nghiệm để tìm nghiệm.

2] Với nghiệm dương nhỏ nhất

  • Xét x > 0 [k ∈ Z]
  • Thay vào họ nghiệm để tìm nghiệm.

Tìm tập giá trị

Tìm tập giá trị của phương trình A.

  • Biến đổi phương trình về dạng phương trình bậc hai.
  • Đặt phương trình lượng giác [sin, cos...] = t [nếu có điều kiện]
  • Tìm đỉnh I [-b/2a; -Δ/4a]
  • Vẽ bảng xét giả trị [hình minh họa]: [pt âm → mũi trên đi ↑ rồi ↓ và ngược lại]

  • Tìm miền giá trị tại hai điểm thuộc t [thay 2 giá trị đó vào t] rồi rút ra kết luận.
  • Chú ý: Asinx + Bcosx = C
Điều kiện

Video liên quan

Chủ Đề