What is the common regulation of gene expression in both prokaryotes and eukaryotes?

1. Foussard M, Cabantous S, Pedelacq J, Guillet V, Tranier S, Mourey L, Birck C, Samama J. The molecular puzzle of two-component signaling cascades. Microbes Infect. 2001;3(5):417–424. [PubMed] [Google Scholar]

2. Stock AM, Robinson VL, Goudreau PN. Two-component signal transduction. Annu Rev Biochem. 2000;69:183–215. [PubMed] [Google Scholar]

3. Hoch J, Silhavy T, editors. Two-component Signal Transduction. American Society for Microbiology; Washington DC: 1995. [Google Scholar]

4▪. Pereira SF, Goss L, Dworkin J. Eukaryote-like serine/threonine kinases and phosphatases in bacteria. Microbiol Mol Biol Rev. 2011;75(1):192–212. A comprehensive review article detailing the current state of research into eukaryotic-like serine/threonine kinases and phosphatases in bacteria. [PMC free article] [PubMed] [Google Scholar]

5▪. Burnside K, Rajagopal L. Aspects of eukaryotic-like signaling in Gram-positive cocci: a focus on virulence. Future Microbiol. 2011;6:747–761. An interesting review article focused on the current understanding of the role eukaryotic-like serine/threonine kinases and phosphatases play in the virulence of gram-positive cocci. [PMC free article] [PubMed] [Google Scholar]

6. Lin WJ, Walthers D, Connelly JE, Burnside K, Jewell KA, Kenney LJ, Rajagopal L. Threonine phosphorylation prevents promoter DNA binding of the Group B Streptococcus response regulator CovR. Mol Microbiol. 2009;71(6):1477–1495. [PMC free article] [PubMed] [Google Scholar]

7. Ulijasz AT, Falk SP, Weisblum B. Phosphorylation of the RitR DNA-binding domain by a Ser-Thr phosphokinase: implications for global gene regulation in the streptococci. Mol Microbiol. 2009;71(2):382–390. [PubMed] [Google Scholar]

8. Molle V, Kremer L, Girard-Blanc C, Besra GS, Cozzone AJ, Prost JF. An FHA phosphoprotein recognition domain mediates protein EmbR phosphorylation by PknH, a Ser/Thr protein kinase from Mycobacterium tuberculosis. Biochemistry (Mosc) 2003;42(51):15300–15309. [PubMed] [Google Scholar]

9. Sharma K, Gupta M, Krupa A, Srinivasan N, Singh Y. EmbR, a regulatory protein with ATPase activity, is a substrate of multiple serine/threonine kinases and phosphatase in Mycobacterium tuberculosis. FEBS J. 2006;273(12):2711–2721. [PubMed] [Google Scholar]

10. Sharma K, Gupta M, Pathak M, Gupta N, Koul A, Sarangi S, Baweja R, Singh Y. Transcriptional control of the mycobacterial embCAB operon by PknH through a regulatory protein, EmbR, in vivo. J Bacteriol. 2006;188(8):2936–2944. [PMC free article] [PubMed] [Google Scholar]

11. Matsumoto A, Hong SK, Ishizuka H, Horinouchi STB. Phosphorylation of the AfsR protein involved in secondary metabolism in Streptomyces species by a eukaryotic-type protein kinase. Gene. 1994;146(1):47–56. [PubMed] [Google Scholar]

12. Didier JP, Cozzone AJ, Duclos B. Phosphorylation of the virulence regulator SarA modulates its ability to bind DNA in Staphylococcus aureus. FEMS Microbiol Lett. 2010;306(1):30–36. [PubMed] [Google Scholar]

13. Truong-Bolduc QC, Ding Y, Hooper DC. Posttranslational modification influences the effects of MgrA on norA expression in Staphylococcus aureus. J Bacteriol. 2008;190(22):7375–7381. [PMC free article] [PubMed] [Google Scholar]

14. Jiang SM, Cieslewicz MJ, Kasper DL, Wessels MR. Regulation of virulence by a two-component system in group B streptococcus. J Bacteriol. 2005;187(3):1105–1113. [PMC free article] [PubMed] [Google Scholar]

15. Lamy MC, Zouine M, Fert J, Vergassola M, Couve E, Pellegrini E, Glaser P, Kunst F, Msadek T, Trieu-Cuot P, Poyart C. CovS/CovR of group B streptococcus: a two-component global regulatory system involved in virulence. Mol Microbiol. 2004;54(5):1250–1268. [PubMed] [Google Scholar]

16▪▪. Lembo A, Gurney MA, Burnside K, Banerjee A, de los Reyes M, Connelly JE, Lin WJ, Jewell KA, Vo A, Renken CW, Doran KS, et al. Regulation of CovR expression in Group B Streptococcus impacts blood-brain barrier penetration. Mol Microbiol. 2010;77(2):431–443. One of a series of publications from this group detailing the cross-talk between two-component systems and eukaryotic-like signaling enzymes and the implications of this cross-talk on virulence of GBS. [PMC free article] [PubMed] [Google Scholar]

17. Jiang SM, Ishmael N, Hotopp JD, Puliti M, Tissi L, Kumar N, Cieslewicz MJ, Tettelin H, Wessels MR. Variation in the group B Streptococcus CsrRS regulon and effects on pathogenicity. J Bacteriol. 2008;190(6):1956–1965. [PMC free article] [PubMed] [Google Scholar]

18. Federle MJ, McIver KS, Scott JR. A response regulator that represses transcription of several virulence operons in the group A streptococcus. J Bacteriol. 1999;181(12):3649–3657. [PMC free article] [PubMed] [Google Scholar]

19. Gryllos I, Levin JC, Wessels MR. The CsrR/CsrS two-component system of group A Streptococcus responds to environmental Mg2+ Proc Natl Acad Sci U S A. 2003;100(7):4227–4232. [PMC free article] [PubMed] [Google Scholar]

20. Dalton TL, Scott JR. CovS inactivates CovR and is required for growth under conditions of general stress in Streptococcus pyogenes. J Bacteriol. 2004;186(12):3928–3937. [PMC free article] [PubMed] [Google Scholar]

21. Gryllos I, Grifantini R, Colaprico A, Jiang S, Deforce E, Hakansson A, Telford JL, Grandi G, Wessels MR. Mg(2+) signalling defines the group A streptococcal CsrRS (CovRS) regulon. Mol Microbiol. 2007;65(3):671–683. [PubMed] [Google Scholar]

22. Bugrysheva J, Froehlich BJ, Freiberg JA, Scott JR. Serine/Threonine protein kinase Stk is required for virulence, stress response and penicillin tolerance in Streptococcus pyogenes. Infect Immun. 2011 [PMC free article] [PubMed] [Google Scholar]

23. Agarwal S, Pancholi P, Pancholi V. Role of Serine/Threonine Phosphatase (SP-STP) in Streptococcus pyogenes Physiology and Virulence. J Biol Chem. 2011;286(48):41368–41380. [PMC free article] [PubMed] [Google Scholar]

24. Jin H, Pancholi V. Identification and biochemical characterization of a eukaryotic-type serine/threonine kinase and its cognate phosphatase in Streptococcus pyogenes: their biological functions and substrate identification. J Mol Biol. 2006;357(5):1351–1372. [PubMed] [Google Scholar]

25. Pancholi V, Boel G, Jin H. Streptococcus pyogenes Ser/Thr kinase-regulated cell wall hydrolase is a cell division plane-recognizing and chain-forming virulence factor. J Biol Chem. 2010;285(40):30861–30874. [PMC free article] [PubMed] [Google Scholar]

26. Ulijasz AT, Andes DR, Glasner JD, Weisblum B. Regulation of iron transport in Streptococcus pneumoniae by RitR, an orphan response regulator. J Bacteriol. 2004;186(23):8123–8136. [PMC free article] [PubMed] [Google Scholar]

27. Horinouchi S, Hara O, Beppu T. Cloning of a pleiotropic gene that positively controls biosynthesis of A-factor, actinorhodin, and prodigiosin in Streptomyces coelicolor A3(2) and Streptomyces lividans. J Bacteriol. 1983;155(3):1238–1248. [PMC free article] [PubMed] [Google Scholar]

28. Cheung AL, Nishina KA, Trotonda MP, Tamber S. The SarA protein family of Staphylococcus aureus. Int J Biochem Cell Biol. 2008;40(3):355–361. [PMC free article] [PubMed] [Google Scholar]

29. Chien Y, Manna AC, Projan SJ, Cheung AL. SarA, a global regulator of virulence determinants in Staphylococcus aureus, binds to a conserved motif essential for sar-dependent gene regulation. J Biol Chem. 1999;274(52):37169–37176. [PubMed] [Google Scholar]

30. Cheung AL, Nishina K, Manna AC. SarA of Staphylococcus aureus binds to the sarA promoter to regulate gene expression. J Bacteriol. 2008;190(6):2239–2243. [PMC free article] [PubMed] [Google Scholar]

31. Donat S, Streker K, Schirmeister T, Rakette S, Stehle T, Liebeke M, Lalk M, Ohlsen K. Transcriptome and functional analysis of the eukaryotic-type serine/threonine kinase PknB in Staphylococcus aureus. J Bacteriol. 2009;191(13):4056–4069. [PMC free article] [PubMed] [Google Scholar]

32. Burnside K, Lembo A, de Los Reyes M, Iliuk A, Binhtran NT, Connelly JE, Lin WJ, Schmidt BZ, Richardson AR, Fang FC, Tao WA, et al. Regulation of hemolysin expression and virulence of Staphylococcus aureus by a serine/threonine kinase and phosphatase. PLoS ONE. 2010;5(6):e11071. [PMC free article] [PubMed] [Google Scholar]

33. Fournier B, Aras R, Hooper DC. Expression of the multidrug resistance transporter NorA from Staphylococcus aureus is modified by a two-component regulatory system. J Bacteriol. 2000;182(3):664–671. [PMC free article] [PubMed] [Google Scholar]

34. Fournier B, Truong-Bolduc QC, Zhang X, Hooper DC. A mutation in the 5' untranslated region increases stability of norA mRNA, encoding a multidrug resistance transporter of Staphylococcus aureus. J Bacteriol. 2001;183(7):2367–2371. [PMC free article] [PubMed] [Google Scholar]

35. Kaatz GW, Thyagarajan RV, Seo SM. Effect of promoter region mutations and mgrA overexpression on transcription of norA, which encodes a Staphylococcus aureus multidrug efflux transporter. Antimicrob Agents Chemother. 2005;49(1):161–169. [PMC free article] [PubMed] [Google Scholar]

36. Luong TT, Dunman PM, Murphy E, Projan SJ, Lee CY. Transcription Profiling of the mgrA Regulon in Staphylococcus aureus. J Bacteriol. 2006;188(5):1899–1910. [PMC free article] [PubMed] [Google Scholar]

37. Shaw LN, Aish J, Davenport JE, Brown MC, Lithgow JK, Simmonite K, Crossley H, Travis J, Potempa J, Foster SJ. Investigations into sigmaB-modulated regulatory pathways governing extracellular virulence determinant production in Staphylococcus aureus. J Bacteriol. 2006;188(17):6070–6080. [PMC free article] [PubMed] [Google Scholar]

38. Munoz-Dorado J, Inouye S, Inouye M. A gene encoding a protein serine/threonine kinase is required for normal development of M. xanthus, a gram-negative bacterium. Cell. 1991;67(5):995–1006. [PubMed] [Google Scholar]

39. Dworkin M. Recent advances in the social and developmental biology of the myxobacteria. Microbiol Rev. 1996;60(1):70–102. [PMC free article] [PubMed] [Google Scholar]

40. Nariya H, Inouye S. Identification of a protein Ser/Thr kinase cascade that regulates essential transcriptional activators in Myxococcus xanthus development. Molec Microbiol. 2005;58(2):367–379. [PubMed] [Google Scholar]

41. Nariya H, Inouye S. A protein Ser/Thr kinase cascade negatively regulates the DNA-binding activity of MrpC, a smaller form of which may be necessary for the Myxococcus xanthus development. Mol Microbiol. 2006;60 (5):1205–1217. [PubMed] [Google Scholar]

42. Dorman CJ, Deighan P. Regulation of gene expression by histone-like proteins in bacteria. Curr Opin Genet Dev. 2003;13(2):179–184. [PubMed] [Google Scholar]

43. Rimsky S. Structure of the histone-like protein H-NS and its role in regulation and genome superstructure. Curr Opin Microbiol. 2004;7(2):109–114. [PubMed] [Google Scholar]

44. Peterson CL, Laniel MA. Histones and histone modifications. Curr Biol. 2004;14 (14):R546–551. [PubMed] [Google Scholar]

45. Aki T, Choy HE, Adhya S. Histone-like protein HU as a specific transcriptional regulator: co-factor role in repression of gal transcription by GAL repressor. Genes Cells. 1996;1(2):179–188. [PubMed] [Google Scholar]

46. Cerutti H, Casas-Mollano JA. Histone H3 phosphorylation: universal code or lineage specific dialects? Epigenetics. 2009;4(2):71–75. [PubMed] [Google Scholar]

47. Oberto J, Nabti S, Jooste V, Mignot H, Rouviere-Yaniv J. The HU regulon is composed of genes responding to anaerobiosis, acid stress, high osmolarity and SOS induction. PLoS ONE. 2009;4(2):e4367. [PMC free article] [PubMed] [Google Scholar]

48. Udo H, Lam CK, Mori S, Inouye M, Inouye S. Identification of a substrate for Pkn2, a protein Ser/Thr kinase from Myxococcus xanthus by a novel method for substrate identification. J Mol Microbiol Biotechnol. 2000;2 (4):557–563. [PubMed] [Google Scholar]

49. Kano Y, Wada M, Nagase T, Imamoto F. Genetic characterization of the gene hupB encoding the HU-1 protein of Escherichia coli. Gene. 1986;45(1):37–44. [PubMed] [Google Scholar]

50. Lewis DE, Geanacopoulos M, Adhya S. Role of HU and DNA supercoiling in transcription repression: specialized nucleoprotein repression complex at gal promoters in Escherichia coli. Mol Microbiol. 1999;31(2):451–461. [PubMed] [Google Scholar]

51. Busby S, Ebright RH. Transcription activation by catabolite activator protein (CAP) J Mol Biol. 1999;293(2):199–213. [PubMed] [Google Scholar]

52. Novakova L, Saskova L, Pallova P, Janecek J, Novotna J, Ulrych A, Echenique J, Trombe MC, Branny P. Characterization of a eukaryotic type serine/threonine protein kinase and protein phosphatase of Streptococcus pneumoniae and identification of kinase substrates. Febs J. 2005;272(5):1243–1254. [PubMed] [Google Scholar]

53▪. Lima A, Duran R, Schujman GE, Marchissio MJ, Portela MM, Obal G, Pritsch O, de Mendoza D, Cervenansky C. Serine/threonine protein kinase PrkA of the human pathogen Listeria monocytogenes: Biochemical characterization and identification of interacting partners through proteomic approaches. J Proteomics. 2011 Using affinity chromatography and proteomics, this study identified the “interactome” of PrkA revealing a global role for this STK in numerous fundamental biological processes from L. monocytogenes. [PubMed] [Google Scholar]

54. Archambaud C, Gouin E, Pizarro-Cerda J, Cossart P, Dussurget O. Translation elongation factor EF-Tu is a target for Stp, a serine-threonine phosphatase involved in virulence of Listeria monocytogenes. Mol Microbiol. 2005;56 (2):383–396. [PubMed] [Google Scholar]

55. Rodnina MV, Wintermeyer W. Recent mechanistic insights into eukaryotic ribosomes. Curr Opin Cell Biol. 2009;21(3):435–443. [PubMed] [Google Scholar]

56. Hershey JW. Protein phosphorylation controls translation rates. J Biol Chem. 1989;264(35):20823–20826. [PubMed] [Google Scholar]

57. Browne GJ, Proud CG. Regulation of peptide-chain elongation in mammalian cells. Eur J Biochem. 2002;269(22):5360–5368. [PubMed] [Google Scholar]

58. Rhoads RE. Signal transduction pathways that regulate eukaryotic protein synthesis. J Biol Chem. 1999;274(43):30337–30340. [PubMed] [Google Scholar]

59. Sans MD, Xie Q, Williams JA. Regulation of translation elongation and phosphorylation of eEF2 in rat pancreatic acini. Biochem Biophys Res Commun. 2004;319(1):144–151. [PubMed] [Google Scholar]

60. Gaidenko TA, Kim TJ, Price CW. The PrpC serine-threonine phosphatase and PrkC kinase have opposing physiological roles in stationary-phase Bacillus subtilis cells. J Bacteriol. 2002;184(22):6109–6114. [PMC free article] [PubMed] [Google Scholar]

61▪▪. Shah IM, Laaberki MH, Popham DL, Dworkin J. A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell. 2008;135(3):486–496. The first study to reveal the activating signal for a prokaryotic STK as well as describe the downstream implications. This study describes how PrkC of B. subtilis senses unlinked peptidoglycan and induces germination. [PMC free article] [PubMed] [Google Scholar]

62▪. Absalon C, Obuchowski M, Madec E, Delattre D, Holland IB, Seror SJ. CpgA EF-Tu and the stressosome protein YezB are substrates of the Ser/Thr kinase/phosphatase couple, PrkC/PrpC, in Bacillus subtilis. Microbiology. 2009;155(Pt 3):932–943. This elegant study describes a mechanism for how PrkC and PrpC of B. subtilis are able to control growth and germination by sensing extracellular unlinked peptidoglycan. [PubMed] [Google Scholar]

63. Shah IM, Dworkin J. Induction and regulation of a secreted peptidoglycan hydrolase by a membrane Ser/Thr kinase that detects muropeptides. Mol Microbiol. 2010;75(5):1232–1243. [PubMed] [Google Scholar]

64▪▪. Sajid A, Arora G, Gupta M, Singhal A, Chakraborty K, Nandicoori VK, Singh Y. Interaction of Mycobacterium tuberculosis Elongation Factor Tu with GTP is regulated by phosphorylation. J Bacteriol. 2011 The first study to describe how STK phosphorylation of an elongation factor is able to regulate protein synthesis. This study shows that phosphorylation of EF-Tu by PknB of M. tuberulosis prevents its interaction with GTP which is essential for function and protein synthesis. [PMC free article] [PubMed] [Google Scholar]

65. Burnside K, Lembo A, Harrell MI, Gurney M, Xue L, Binh Tran NT, Connelly JE, Jewell KA, Schmidt BZ, de Los Reyes M, Tao WA, et al. The serine/threonine phosphatase Stp1 mediates post transcriptional regulation of hemolysin, autolysis and virulence of Group B Streptococcus. J Biol Chem. 2011 [PMC free article] [PubMed] [Google Scholar]

66. Banu LD, Conrads G, Rehrauer H, Hussain H, Allan E, van der Ploeg JR. The Streptococcus mutans serine/threonine kinase, PknB, regulates competence development, bacteriocin production, and cell wall metabolism. Infect Immun. 2010;78(5):2209–2220. [PMC free article] [PubMed] [Google Scholar]

67. Saskova L, Novakova L, Basler M, Branny P. Eukaryotic-type serine/threonine protein kinase StkP is a global regulator of gene expression in Streptococcus pneumoniae. J Bacteriol. 2007;189(11):4168–4179. [PMC free article] [PubMed] [Google Scholar]

What is common regulation of gene expression in both prokaryotes?

Prokaryotic cells can only regulate gene expression by controlling the amount of transcription.

What is the most common form of gene expression regulation in both bacteria and eukaryotes?

Answer and Explanation: The most common form of gene expression regulation in both bacteria and eukaryotes is the transcriptional - level control.

What is one way that gene regulation in eukaryotic and prokaryotic cells is similar?

One way that gene regulation in eukaryotic and prokaryotic cells is similar is: In both types of cell, the primary mechanism to regulate gene expression is at the level of transcriptional regulation.