The aa similarity postulate states that 2 triangles are similar is 2 angles are

In Euclidean geometry, the AA postulate states that two triangles are similar if they have two corresponding angles congruent.

The AA postulate follows from the fact that the sum of the interior angles of a triangle is always equal to 180°. By knowing two angles, such as 32° and 64° degrees, we know that the next angle is 84°, because 180-(32+64)=84. (This is sometimes referred to as the AAA Postulate—which is true in all respects, but two angles are entirely sufficient.)

The postulate can be better understood by working in reverse order. The two triangles on grids A and B are similar, by a 1.5 dilation from A to B. If they are aligned, as in grid C, it is apparent that the angle on the origin is congruent with the other (D). We also know that the pair of sides opposite the origin are parallel. We know this because the pairs of sides around them are similar, stem from the same point, and line up with each other. We can then look at the sides around the parallels as transversals, and therefore the corresponding angles are congruent. Using this reasoning we can tell that similar triangles have congruent angles.

But we don't need to know all three sides and all three angles ...two or three out of the six is usually enough.

There are three ways to find if two triangles are similar: AA, SAS and SSS:

AA

AA stands for "angle, angle" and means that the triangles have two of their angles equal.

If two triangles have two of their angles equal, the triangles are similar.

Example: these two triangles are similar:

The aa similarity postulate states that 2 triangles are similar is 2 angles are

If two of their angles are equal, then the third angle must also be equal, because angles of a triangle always add to make 180°.

In this case the missing angle is 180° − (72° + 35°) = 73°

So AA could also be called AAA (because when two angles are equal, all three angles must be equal).

SAS

SAS stands for "side, angle, side" and means that we have two triangles where:

  • the ratio between two sides is the same as the ratio between another two sides
  • and we we also know the included angles are equal.

If two triangles have two pairs of sides in the same ratio and the included angles are also equal, then the triangles are similar.

Example:

The aa similarity postulate states that 2 triangles are similar is 2 angles are

In this example we can see that:

  • one pair of sides is in the ratio of 21 : 14 = 3 : 2
  • another pair of sides is in the ratio of 15 : 10 = 3 : 2
  • there is a matching angle of 75° in between them

So there is enough information to tell us that the two triangles are similar.

Using Trigonometry

We could also use Trigonometry to calculate the other two sides using the Law of Cosines:

Example Continued

In Triangle ABC:

  • a2 = b2 + c2 - 2bc cos A
  • a2 = 212 + 152 - 2 × 21 × 15 × Cos75°
  • a2 = 441 + 225 - 630 × 0.2588...
  • a2 = 666 - 163.055...
  • a2 = 502.944...
  • So a = √502.94 = 22.426...

In Triangle XYZ:

  • x2 = y2 + z2 - 2yz cos X
  • x2 = 142 + 102 - 2 × 14 × 10 × Cos75°
  • x2 = 196 + 100 - 280 × 0.2588...
  • x2 = 296 - 72.469...
  • x2 = 223.530...
  • So x = √223.530... = 14.950...

Now let us check the ratio of those two sides:

a : x = 22.426... : 14.950... = 3 : 2

the same ratio as before!

Note: we can also use the Law of Sines to show that the other two angles are equal.

SSS

SSS stands for "side, side, side" and means that we have two triangles with all three pairs of corresponding sides in the same ratio.

If two triangles have three pairs of sides in the same ratio, then the triangles are similar.

Example:

The aa similarity postulate states that 2 triangles are similar is 2 angles are

In this example, the ratios of sides are:

  • a : x = 6 : 7.5 = 12 : 15 = 4 : 5
  • b : y = 8 : 10 = 4 : 5
  • c : z = 4 : 5

These ratios are all equal, so the two triangles are similar.

Using Trigonometry

Using Trigonometry we can show that the two triangles have equal angles by using the Law of Cosines in each triangle:

In Triangle ABC:

  • cos A = (b2 + c2 - a2)/2bc
  • cos A = (82 + 42 - 62)/(2× 8 × 4)
  • cos A = (64 + 16 - 36)/64
  • cos A = 44/64
  • cos A = 0.6875
  • So Angle A = 46.6°

In Triangle XYZ:

  • cos X = (y2 + z2 - x2)/2yz
  • cos X = (102 + 52 - 7.52)/(2× 10 × 5)
  • cos X = (100 + 25 - 56.25)/100
  • cos X = 68.75/100
  • cos X = 0.6875
  • So Angle X = 46.6°

So angles A and X are equal!

Similarly we can show that angles B and Y are equal, and angles C and Z are equal.

 

7861, 7862, 7863, 7864, 7865, 7866, 7867, 7868, 7869, 7870, 7871, 7872

Similar Similar Triangles Similar Triangle Theorems Congruent Congruent Triangles Finding Congruent Triangles Trigonometry Index

What is the AA similarity postulate?

In Euclidean geometry, the AA postulate states that two triangles are similar if they have two corresponding angles congruent. The AA postulate follows from the fact that the sum of the interior angles of a triangle is always equal to 180°.

What does it mean by AA in AA similarity?

In two triangles, if two pairs of corresponding angles are congruent, then the triangles are similar .

What does AA triangle similarity theorem state?

AA (or AAA) or Angle-Angle Similarity If any two angles of a triangle are equal to any two angles of another triangle, then the two triangles are similar to each other. From the figure given above, if ∠ A = ∠X and ∠C = ∠Z then ΔABC ~ΔXYZ.

What statement describes that two triangles are similar by AA similarity?

Angle-Angle (AA) says that two triangles are similar if they have two pairs of corresponding angles that are congruent.