Giải bài tập toán 11 bài 1 hàm số lượng giác

Xem thêm các sách tham khảo liên quan:

Sách Giải Sách Bài Tập Toán 11 Bài 1: Hàm số lượng giác giúp bạn giải các bài tập trong sách bài tập toán, học tốt toán 11 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:

Lời giải:

Lời giải:

a] cosx + 1 ≥ 0, ∀x ∈ R. Vậy D = R

c] cosx – cos3x = -2sin2x.sin[-x] = 4sin2x.cosx

⇒ cosx – cos3x ≠ 0 ⇔ sinx ≠ 0 và cosx ≠ 0

d] tan x và cos x có nghĩa khi sin x ≠ 0 và cos x ≠ 0

Lời giải:

a] 0 ≤ |sinx| ≤ ln n – 2 ≤ -2|sinx| ≤ 0

Vậy giá trị lớn nhất của y = 3 – 2|sin x| là 3, đạt được khi sin x = 0; giá trị nhỏ nhất của y là 1, đạt được khi sinx = 1 hoặc sinx = -1

Vậy giá trị nhỏ nhất của y là -√3 đạt được chẳng hạn, tại x = 7π/6; giá trị lớn nhất của y là √3, đạt được chẳng hạn tại x = π/6

c] Ta có:

Vì -1 ≤ cos2x ≤ 1 nên giá trị lớn nhất của y là 3, đạt được khi x = 0, giá trị nhỏ nhất của y là -2, đạt được khi x = π/2

d] 5 – 2cos2x.sin2x = 5 – sin22x / 2

Suy ra giá trị lớn nhất của y = √5 tại x = kπ/2, giá trị nhỏ nhất là

Lời giải:

a] Đẳng thức xảy ra khi các biểu thức ở hai vế có nghĩa tức là sinx ≠ 0 và cosx ≠ 0. Vậy đẳng thức xảy ra khi x ≠ kπ/2, k ∈ Z

b] Đẳng thức xảy ra khi cosx ≠ 0, tức là khi x ≠ π/2 + kπ, k ∈ Z

c] Đẳng thức xảy ra khi sinx ≠ 0, tức là x ≠ kπ, k ∈ Z

d] Đẳng thức xảy ra khi sinx ≠ 0 và cosx ≠ 0, tức là x ≠ kπ/2, k ∈ Z

Lời giải:

a] Hàm số lẻ

b] Hàm số lẻ

c] Hàm số chẵn

d] Hàm số chẵn

b] Từ đồ thị hàm số y = cos2x, hãy vẽ đồ thị hàm số y = |cos2x|

Lời giải:

a] cos2[x + kπ] = cos[2x + k2π] = cos2x, k ∈ Z. Vậy hàm số y = cos 2x là hàm số chẵn, tuần hoàn, có chu kì là π.

Đồ thị hàm số y = cos2x

Đồ thị hàm số y = |cos2x|

Lời giải:

Hàm số xác định khi 1 + cos2x ≥ 0 ⇔ cosx ≥ [-1]/2

⇔ [-2π]/3 + k2π ≤ x ≤ 2π/3 + k2π, k ∈ Z.

Chọn đáp án: A

Lời giải:

Hàm số không xác định khi cotx = 0 hoặc khi cotx không xác định, tức là khi x = kπ hoặc x = π/2 + kπ, k ∈ Z.

Gộp hai giá trị này lại ta được kết quả x = kπ/2, k ∈ Z.

Vậy tập xác định là R \ {π/2+kπ,k ∈ Z }.

Chọn đáp án: B

Lời giải:

Hàm số không xác định khi tanx không xác định hoặc sinx = 1, tức là khi x = π/2+kπ, hoặc x = π/2+k2π, k ∈ Z.

Gộp hai giá trị này lại ta được kết quả x = π/2+kπ, k ∈ Z.

Vậy tập xác định là R \ {π/2+kπ,k ∈ Z}.

Chọn đáp án: C

Lời giải:

Cách 1. Hàm số không xác định khi cosx > 1/2, hoặc tan x = √3 hoặc tan x không xác định, tức là khi [-π]/3 + k2π < x < π/3+k2π, k ∈ Z.

Hoặc x = π/3 + k2π, hoặc x = π/2 + kπ, k ∈ Z.

Vậy tập xác định là R \ {[[-π]/3 + k2π; π/3 + k2π]∪ {π/2 + kπ},k ∈ Z }.

Cách 2. Xét các phương án

Với x = π/3 thì tan x = √3 nên hàm số không xác định, do đó các phương án A và B bị loại.

Chọn đáp án: D

A. -1/2          B. -1

C. 1 – √2          D. -√2

Lời giải:

Hàm số đạt giá trị nhỏ nhất khi cosx + sinx đạt giá trị lớn nhất.

Ta có

cosx + sinx = cosx + cos[π/2-x] = 2cosπ/4.cos[x- π/4] = √2cos[x- π/4] ≤ √2.

Giá trị lớn nhất √2 đạt được chẳng hạn khi x = π/4.

Vậy giá trị nhỏ nhất của hàm số 1 – √2.

*Ta cũng có thể biến đổi như sau:

[cosx + sinx]2 = 1 + sin2x ≤ 2.

Giá trị lớn nhất của [cosx + sinx]2 bằng 2, đạt được khi sin2x = 1.

Vậy cosx + sinx đạt giá trị lớn nhất bằng √2.

Chọn đáp án: C

A. 2          B. 2 + √2

C. 3/2          D. 3 – √2

Lời giải:

Cách 1. Ta có [|cosx| + |sinx|]2 = cos2 x + sin2 x + 2|cosx.sinx| = 1 + |sin2x| ≤ 2.

Suy ra |cosx| + |sinx| ≤ √2.

Giá trị lớn nhất của |cosx| + |sinx| bằng √2, đạt được khi sin2x = 1.

Vậy giá trị lớn nhất của hàm số là 2 + √2.

Cách 2. Với x = 0 ta thấy y = 3 đều lớn hơn các giá trị trong các phương án A, C, D nên các phương án này bị loại.

Chọn đáp án: B

Lời giải:

Khi x = 0 thì y = 1 lớn hơn 3/4, lớn hơn √2/2 và lớn hơn √3/2, nên ba phương án B, C, D bị loại.

Chọn đáp án: A

§1. HÀM SỐ LƯỢNG GIÁC A. KIẾN THỨC CĂN BẢN ĐỊNH NGHĨA Hàm số sin và hàm số côsin aj Hàm sô' sin: Quy tắc đặt tương ứng mỗi số thực X với số thực sinx sin : R -> R X i-> y = sinx được gọi là hàm số sin, kí hiệu là y = sinx. Tập xác định của hàm sô' sin là R. Hàm số côsin: Quy tắc đặt tương ứng mỗi sô' thực X với sô' thực cosx cos : R -> R X H y = cosx. được gọi là hàm sô' cosin, kí hiệu là y = cosx. Tập xác định của hàm sô' côsin là R. Hàm sô' tang và hàm sô' côtang Hàm số tang: Hàm sô' tang là hàm sô' được xác định bởi công thức sinx . y = - - [cosx * 0] cosx Kí hiệu là y - tanx. Tập xác định của hàm sô' y = tanx là D = R \ + kn, k 6 zI. Hàm số côtang: Hàm sô' côtang là hàm sô' được xác định bởi công thức cosx , . y = [sinx * 0] sinx Kí hiệu là y - cotx. Tập xác định của hàm sô' y = cotx là D = R \ {kĩi, k e Z}. TÍNH TUẦN HOÀN CỦA HÀM số LƯỢNG GIÁC Hàm sô' y = sinx và y = cosx là hàm sô' tuần hoàn với chu kì 2n. Hàm sô' y = tanx và y = cotx là hàm sô' tuần hoàn với chu kì 7t. sự BIẾN THIÊN VÀ Đổ THỊ CỦA HÀM số LƯỢNG GIÁC Hàm số y = sinx Xác định với mọi X e K và -1 < sinx < 1 Là hàm sô' lẻ. Là hàm số tuần hoàn với chu kì 271. Bảng biến thiên của hàm số y = sìnx trên đoạn [-7t; 7ĩ] như sau: X -71 71 2 0 71 2 71 y = sinx 0 , 1 — —"* 0 -1 — —* 0 Xác định với mọi X e ỉ và -1 < cosx < 1. Là hàm số chẵn. Là hàm số tuần hoàn với chu kì 2tt. Bảng biến thiên của hàm số y = cosx trên đoạn [-7i; 71] X -71 0 71 y = cosx -1 — Đồ thị hàm số y = cosx Ta có: cosx = sin[x + với mọi X, nên bằng cách tịnh tiến đồ thị hàm số y = sinx sang trái một đoạn có độ dài ta được đồ thị hàm sô' Hàm số y = tanx * Có tập xác định là D = R\ j I + kĩt, ke z Là hàm số lẻ. Là hàm số tuần hoàn với chu kì 71. 4. Đổ thị của hàm số y = tanx Hàm số y = cotx Có tập xác định là D = R\ {krc, ke z} Là hàm số lẻ. Là hàm số tuần hoàn với chu kì 71. Bảng biến thiên của hàm số y = cotx trên [0; 7i] Sự biến thiên và đồ thị của hàm số y = cotx trên khoảng [0; 7t]. Đồ thị hàm số y = cotx Bảng biến thiên của hàm số y - tanx trên B. PHƯƠNG PHÁP GIẢI BÀI TẬP 1. Hãy xác định những giá trị của X trên đoạn 3]1 đê’ hàm số y = tanx: Nhận giá trị bằng 0; c] Nhận giá trị dương; Nhận giá trị bằng 1; d] Nhận giá trị âm. tfiai 3ti Dựa vào đồ thị của hàm số y = tanx trên -7t;- tanx = 0 tại X e {-7t; 0; 7t} tanx = 1 tại xe Ị- y 4 4 4 ] tanx > 0 khi X e 7i; — j V [^’2] u [n’~2"] ta có: 2. Tìm tập xác định của các hàm số: 1 + cosx a] y = i»y. c] y = tan X V1-COSX d]y = cot x + ơ] I y xác định khi và chỉ khi sinx * 0 X * kĩt, k e z Vậy tập xác định D = R \ {kĩt, k e Z}. Vi 1 + cosx > 0 nên y xác định khi và chỉ khi: - cosx > 0 o cosx < 1 0 cosx # 1 o X í 2k7t, k 6 z Vậy tập xác định D = R \ {k2tt, k e Z}. y xác định khi và chỉ khi X - + b o X — + kít, k e 3 2 6 Vậy tập xác định D = R \ [+ kx, k e Z|. 6 71 - 7C rn y xác định khi và chỉ khi x + -7*k7Tx*--7 + kĩt, k e z 6 6 Vậy tập xác định D = R \ 1" + kx, k e Z|. 6 3. Dựa vào đồ thị của hàm sô' y = sinx, hãy vẽ đồ thị của hàm số y = I sinx I. ỐỊiải , .1 . I í sin X nếu sin X > 0 , I . I Ta co I sinxj = < . , do đó đõ thị của hàm sô y = I sinx I [-sinx nếu sinxcO có được từ đồ thị CO của hàm sô' y = sinx bằng cách: Giữ nguyên phần đồ thị của co nằm trong nửa mặt phẳng y > 0 [tức là nửa mặt phẳng bên trên trục hoành kể cả bờ Ox]. Lấy hình đôi xứng qua trục hoành của phần đồ thị co nằm trong nửa mặt phẳng y < 0 [tức là nửa mặt phẳng bên dưới trục hoành không kể bờ Ox]; Xóa phần đồ thị của co nằm trong nửa mặt phẳng y < 0 Đồ thị y = I sinx I là đường liền nét trong hình dưới đây: 4. Chứng minh rằng sin2[x + kn] = sin2x với mọi số nguyên k. Từ đó vẽ đồ thị hàm số y = sin2x. Ốjiải Ta có sin2[x + kn] = sin[2x + 2k7t] = sin2x, k e z. Hàm số y = sin2x là hàm số tuần hoàn với chu kì 71 và y = sin2x là hàm sô' lẻ nên ta vẽ đồ thị của y = sin2x trên đoạn 0, được đồ thị trên đoạn ’2 rồi lấy đô'i xứng qua Cuối cùng tịnh tiến song song với trục Ox các đoạn độ dài 7t ta được đồ thị hàm sô' y = sin2x trên K. 71 71 2’2 8. 5. Dựa vào đổ thị hàm số y = cosx, tim các giá trị của X để cosx = Ốịiải Đường thẳng y = — cắt đồ thị hàm số y = cosx tại các giao điểm có hoành 2 độ tương ứng là + k27T và + k27i, k e z. 3 3 6. Dựa vào đố thị cùa hàm số y = sinx, tim các khoảng giá trị của X đê’ hàm số đó nhận giá trị dương. ố^lảl Ta có sinx > 0 ứng với phần đồ thị nằm phía trên trục Ox. Vậy đó là các khoảng [2k7i; 71 + 2kĩt], k Ẽ Zlà các khoảng giá trị của X để sinx > 0. 7. Dựa vào đổ thị của hàm số y = cosx, tìm các khoảng giá trị của X để hàm số đó nhận giá trị âm. ốỊiải Ta có cosx < 0 ứng với phần đồ thị nằm phía dưới trục Ox. Đó là các khoảng Tim giá trị lớn nhất của các hàm số: y = 2 s/cosx + 1; y = 3 - 2sinx. Ốịiải Ta có cosx y X = k2n, k e X Vì sinx > -1 -sinx y < 5. Vậy maxy - 5 o sinx = -1x = -^ + k27i, k 6 z. 2 c. BÀI TẬP LÀM THÊM 1. Tìm tập xác định của các hàm số sau: 1-sinx cosx b] y = cotx X + — - 1; d] y I 3J a] X * — + kn; b] X 2 c] X * + krc; d] X 1 + sinx 1 -sinx 71 2 71 3 71 2 2. Xét tính chẵn lẻ của các hàm số: a] y - sin42x; b] y = cosxsinx sinx -tanx c] y = — tanx + cotx d] y = sinx - cosx. sinx + cotx ĐS: a] Hàm số chẵn; c] Hàm số chẵn; Tìm giá trị lớn nhất, nhỏ nhất của hàm số a] y = -5sin í X -+ 1; b]y = 7l + 2cosx - 3 . ĐS: a] -4; 6; b] -3; 73-3. Chứng minh rằng cos2[x + kĩi] = cos2x, k e z. Từ đó vẽ đổ thị hàm số y - cos2x và y = |cos2x|. Vẽ đồ thị các hàm số sau: b] Hàm số chẵn; d] Hàm số không chẵn không lẻ. a] y = 1 - sinx; c]y = tanj^x + ^; b] y = COS ^x + d] y - cot X - a]y =

Video liên quan

Chủ Đề