Có bao nhiêu khối đa diện là tam giác đều?

Trong chương trình toán bậc THPT, nội dung về khối đa diện và các bài toán liên quan đến thể tích khối đa diện rất phổ biến trong các kì thi. Như vậy khối đa diện đều là gì? Có bao nhiêu loại khối đa diện đều? Thì chủ đề này sẽ trình bày chi tiết về vấn đề đó.

1. Khối đa diện đều là gì?

Khối đa diện đều là một khối đa diện lồi có hai tính chất sau đây:

• Các mặt là những đa giác đều n cạnh.

• Mỗi đỉnh là đỉnh chung của đúng p cạnh. Khối đa diện đều như vậy gọi là khối đa diện đều loại.

Gọi Đ là tổng số đỉnh, C là tổng số cạnh và M là tổng các mặt của khối đa diện đều loại. Ta có:

Một quan hệ khác giữa các giá trị này cho bới công thức Euler:

V−E+F=2.{\displaystyle V-E+F=2.\,}

Còn có ba hệ thức khác với V, E, and F là:

V=4p4−[p−2][q−2],E=2pq4−[p−2][q−2],F=4q4−[p−2][q−2].{\displaystyle V={\frac {4p}{4-[p-2][q-2]}},\quad E={\frac {2pq}{4-[p-2][q-2]}},\quad F={\frac {4q}{4-[p-2][q-2]}}.}

Một kết quả cổ điển là chỉ có đúng năm khối đa diện đều lồi.

Các mệnh đề hình học sau được biết từ Euclid trong tác phẩm Elements:

  1. Mỗi đỉnh của khối đa diện phải là giao của ít nhất ba mặt.
  2. Tại mỗi đỉnh của khối đa diện, tổng các góc của các mặt phải nhỏ hơn 360°.
  3. Các góc tại tất cả các đỉnh của khối đa diện đều là bằng nhau do đó mỗi góc phải nhỏ hơn 360°/3=120°.
  4. Các đa giác đều có từ sáu cạnh trở lên có góc là 120° trở lên nên không thể là mặt của khối đa diện đều, do đó mối mặt của khối đa diện đều chỉ có thể là các tam giác đều, hình vuông hoặc ngũ giác đều. Cụ thể:
    1. Các mặt là tam giác đều: góc ở mỗi đỉnh của tam giác đều là 60°, do đó tại mỗi đỉnh chỉ có 3, 4, hoặc 5 góc của tam giác; tương ứng ta có các tứ diện đều, khối tám mặt đều và khối hai mươi mặt đều.
    2. Các mặt là hình vuông: góc ở đỉnh hình vuông là 90°, do đó chỉ có thể có ba mặt tại mỗi đỉnh ta có khối lập phương.
    3. Các mặt là ngũ giác đều: mỗi góc ở đỉnh là 108°; do đó chỉ có thể có đúng ba mặt tại một đỉnh, khi đo ta có khối mười hai mặt đều.

Một chứng minh khá đơn giản bằng topo dựa vào các thông tin về khối đa diện. Chìa khóa của chứng minh là công thức Euler V−E+F=2{\displaystyle V-E+F=2}, và các quan hệ pF=2E=qV{\displaystyle pF=2E=qV}. Từ các đẳng thức này

2Eq−E+2Ep=2.{\displaystyle {\frac {2E}{q}}-E+{\frac {2E}{p}}=2.}

Một biến đổi đại số đơn giản cho ta

1q+1p=12+1E.{\displaystyle {1 \over q}+{1 \over p}={1 \over 2}+{1 \over E}.}

Vì E{\displaystyle E} là số dương ta phải có

1q+1p>12.{\displaystyle {\frac {1}{q}}+{\frac {1}{p}}>{\frac {1}{2}}.}

Dựa vào việc cả p và q ít nhất là 3, dễ dàng có năm cặp có thể của {p, q}:

{3,3}{4,3}{3,4}{5,3}{3,5}{\displaystyle \{3,3\}\quad \{4,3\}\quad \{3,4\}\quad \{5,3\}\quad \{3,5\}}

Khối đa diện đều trong trò chơi may rủi[sửa | sửa mã nguồn]

Các khối đa diện đều thường được dùng là quân xúc xắc dùng trong các trò chơi may rủi. Con xúc xắc sáu mặt [khối lập phương] thường được dùng hơn cả, tuy nhiên cũng có thể dùng các khối 4, 8, 12, 20 mặt như trong hình dưới đây.

Chủ Đề