Hình thoi và chữ nhật có phải là đa giác đều không vì sao

Sách Giải Sách Bài Tập Toán 8 Bài 1: Đa giác. Đa giác đều giúp bạn giải các bài tập trong sách bài tập toán, học tốt toán 8 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:

Lời giải:

Hình thoi và chữ nhật có phải là đa giác đều không vì sao

Hình thoi và chữ nhật có phải là đa giác đều không vì sao

Các hình c, e, g là các đa giác lồi vì đa giác nằm trên một nửa mặt phẳng với bờ chứa bất kỳ cạnh nào của đa giác.

Hình thoi và chữ nhật có phải là đa giác đều không vì sao

Lời giải:

Hình thoi và chữ nhật có phải là đa giác đều không vì sao

Lời giải:

Tam giác đều, hình vuông, ngũ giác đều, lục giác đều,…

Lời giải:

Vẽ một n-giác lồi, kẻ các đường chéo xuất phát từ một đỉnh của n-giác lồi thì chia đa giác đó thành (n – 2) tam giác.

Tổng các góc của n-giác lồi bằng tổng các góc của (n – 2) tam giác bằng (n – 2).180o.

Hình n-gíác đều có n góc bằng nhau nên số đo mỗi góc bằng:

Hình thoi và chữ nhật có phải là đa giác đều không vì sao

Lời giải:

Công thức tính số đo mỗi góc của đa giác đều có n cạnh:

Hình thoi và chữ nhật có phải là đa giác đều không vì sao

– Đa giác đều 8 cạnh ⇒ n = 8, số đo mỗi góc là: ((8 – 2).180o) / 8 = 135o

– Đa giác đều 10 cạnh ⇒ n = 10, số đo mỗi góc là: ((10 – 2).180o) / 10 = 144o

– Đa giác đều 12 cạnh ⇒ n = 12, số đo mỗi góc là: ((12 – 2).180o) / 12 = 150o

b. Chứng minh rằng hình n-giác có tất cả

Hình thoi và chữ nhật có phải là đa giác đều không vì sao
đường chéo.

Lời giải:

a. Từ mỗi đỉnh của ngũ giác vẽ được 2 đường chéo. Ngũ giác có 5 đỉnh ta kê được 5.2=10 đường chéo, trong đó mỗi đường chéo được tính hai lần. Vậy ngũ giác có tất cả 5 đường chéo.

Từ mỗi đỉnh của lục giác vẽ được 3 đường chéo. Lục giác có 6 đỉnh ta kẻ được 6.3 = 18 đường chéo, trong đó mỗi đường chéo được tính hai lần. Vậy lục giác có tất cả 9 đường chéo.

Hình thoi và chữ nhật có phải là đa giác đều không vì sao

b. Từ mỗi đỉnh của n-giác nối với các đình còn lại ta được n – l đoạn thẳng, trong đó có 2 đoạn thắng là cạnh của hình n-giác (hai đoạn thẳng nối với hai đỉnh kề nhau).

Vậy qua mỗi đỉnh n-giác vẽ được n-3 đường chéo. Hình n-giác có n đỉnh kẻ được n(n- 3) đường chéo, trong đó mỗi đường chéo được tính hai lần. Vậy hình n-giác có tất cả

Hình thoi và chữ nhật có phải là đa giác đều không vì sao
đường chéo.

Lời giải:

Áp dụng công thức tính ở bài 6 chương này.

Đa giác có 8 cạnh, số đường chéo là: (8.(8 – 3)) / 2 = 20 đường chéo;

Đa giác có 10 cạnh, số đường chéo là: (10.(10 – 3)) / 2 = 35 đường chéo;

Đa giác có 12 cạnh, số đường chéo là: (12.(12 – 3)) / 2 = 54 đường chéo.

Lời giải:

Tổng số đo của góc trong và góc ngoài ở mỗi đỉnh của hình n-giác bằng 180o. Hình n-giác có n đỉnh nên tổng số đo các góc trong và góc ngoài của đa giác bằng n.180o. Mặt khác, ta biết tổng các góc trong của hình n-giác bằng (n – 2).180o.

Vậy tổng số đo các góc ngoài của hình n-giác là:

n.180o – (n – 2).180o = n.180o – n.180o + 2.180o = 360o

Lời giải:

Hình n-giác lồi có tổng số đo các góc trong bằng (n – 2).180o và tổng các góc ngoài bằng 360o.

Đa giác lồi có tổng các góc trong bằng tổng các góc ngoài bằng 360o.

⇒ (n – 2).180o = 360o ⇒n = 4

Vậy tứ giác lồi có tổng các góc trong và góc ngoài bằng nhau.

Lời giải:

Ta có: nếu góc của đa giác lồi là góc nhọn thì góc ngoài tương ứng là góc tù. Nếu đa giác lồi có 4 góc nhọn thì tổng các góc ngoài của đa giác lớn hơn 360o.

Vậy đa giác lồi có nhiều nhất là 3 góc nhọn.

Lời giải:

Tổng số đo các góc ngoài của đa giác bằng 360o.

Số đo một góc trong của đa giác đều là 468o – 360o = 108o

Gọi n là số cạnh của đa giác đều. Ta có số đo mỗi góc của đa giác đều bằng

Hình thoi và chữ nhật có phải là đa giác đều không vì sao

Suy ra:

Hình thoi và chữ nhật có phải là đa giác đều không vì sao
= 108o⇒ 180.n – 360 = 108.n⇒ 72n = 360⇒ n = 5

Vậy đa giác đều cần tìm có 5 cạnh.

a. Tam giác và tứ giác không phải là đa giác

b. Hình gồm n đoạn thẳng đôi một có một điểm chung được gọi là đa giác (với n là số tự nhiên lớn hơn 2)

c. Hình gồm n đoạn thẳng (n là số tự nhiên lớn hơn 2) trong đó bất kì hai đoạn thẳng nào có một điểm chung cũng không cùng nằm trên một đường thẳng được gọi là đa giác.

d. Hình tạo bởi nhiều hình tam giác được gọi là đa giác

e. Đa giác luôn nằm trong nửa mặt phẳng cho trước được gọi là đa giác lồi

f. Đa giác luôn nằm trong nửa mặt phẳng có bờ là một đường thẳng chứa một cạnh của nó được gọi là đa giác lồi

g. Hình gồm hai đa giác lồi cho trước là một đa giác lồi.

Lời giải:

a. Sai; b. Sai; c. Đúng; d. Sai; e. Sai; f. Sai; g. Sai

b. Cho hình vuông ABCD. Gọi M, N, P, Q tương ứng là trung điểm của các cạnh BC, CD, DA, AB. Chứng minh MNPQ là hình vuông (tứ giác đều)

c. Cho ngũ giác đều ABCDE. Gọi M, N, P, Q,, R tương ứng là trung điểm của các cạnh BC, CD, DE, EA, AB. Chứng minh MNPQR là ngũ giác đều.

Lời giải:

Hình thoi và chữ nhật có phải là đa giác đều không vì sao

a. Ta có: M là trung điểm của BC

N là trung điểm của AC nên MN là đường trung bình của Δ ABC ⇒ MN = 1/2 AB

Ta có: P là trung điểm của AB nên MP là đường trung bình của Δ ABC

⇒ MP = 1/2 AC

NP là đường trung bình của Δ ABC ⇒ NP = 1/2 BC

Mà AB = BC = AC (gt) ⇒ MN = MP = NP. Vậy Δ MNP đều

b.

Hình thoi và chữ nhật có phải là đa giác đều không vì sao

Xét Δ APQ và Δ BQM:

AQ = BQ (gt)

∠A = ∠B = 90o

AP = BM (gt)

Do đó: Δ APQ = Δ BQM (c.g.c) ⇒ PQ = QM (1)

Xét Δ BQM và Δ CMN:

BM = CM (gt)

∠B = ∠C = 90o

BQ = CN (gt)

Do đó: Δ BQM = Δ CMN (c.g.c) ⇒ QM = MN (2)

Xét Δ CMN và Δ DNP:

CN = DN (gt)

∠C = ∠D = 90o

CM = DP (gt)

Do đó: Δ CMN = Δ DNP (c.g.c) ⇒ MN = NP (3)

Từ (1), (2) và (3) suy ra: MN = NP = PQ = QM

nên tứ giác MNPQ là hình thoi

Vì AP = AQ nên Δ APQ vuông cân tại A

BQ = BM nên Δ BMQ vuông cân tại B

⇒ ∠(AQP) = ∠(BQM) = 45o

∠(AQP) + ∠(PQM) + ∠(BQM) = 180o (kề bù)

⇒ ∠(PQM) = 180o – ( ∠(AQP) + ∠(BQM) )

            = 180o– (45o + 45o) = 90o

Vậy tứ giác MNPQ là hình vuông.

c.

Hình thoi và chữ nhật có phải là đa giác đều không vì sao

Xét Δ ABC và Δ BCD:

AB = BC (gt)

∠B = ∠C (gt)

BC = CD (gt)

Do đó: Δ ABC = Δ BCD (c.g.c)

⇒ AC = BD (1)

Xét Δ BCD và Δ CDE:

BC = CD (gt)

∠C = ∠D (gt)

CD = DE (gt)

Do đó: Δ BCD = Δ CDE (c.g.c) ⇒ BD = CE (2)

Xét Δ CDE và Δ DEA:

CD = DE (gt)

∠D = ∠E (gt)

DE = EA (gt)

Do đó: Δ CDE = Δ DEA (c.g.c) ⇒ CE = DA (3)

Xét Δ DEA và Δ EAB:

DE = EA (gt)

∠E = ∠A (gt)

EA = AB (gt)

Do đó: Δ DEA = Δ EAB (c.g.c) ⇒ DA = EB (4)

Từ (1), (2), (3), (4) suy ra: AC = BD = CE = DA = EB

Trong Δ ABC ta có RM là đường trung bình

⇒ RM = 1/2 AC (tính chất đường trung bình của tam giác)

Mặt khác, ta có: Trong Δ BCD ta có MN là đường trung bình

⇒ MN = 1/2 BD (tính chất đường trung bình của tam giác)

Trong Δ CDE ta có NP là đường trung bình

⇒ NP = 1/2 CE (tính chất đường trung bình của tam giác)

Trong Δ DEA ta có PQ là đường trung bình

⇒ PQ = 1/2 DA (tính chất đường trung bình của tam giác)

Trong Δ EAB ta có QR là đường trung bình

⇒ QR = 1/2 EB (tính chất đường trung bình của tam giác)

Suy ra: MN = NP = PQ = QR = RM

Ta có: ∠A = ∠B = ∠C = ∠D = ∠E = ((5-2 ).180o)/5 = 108o

Δ DPN cân tại D

⇒ ∠(DPN) = ∠(DNP) = (180o– ∠D )/2 = (180o – 108o)/2 = 36o

Δ CNM cân tại C

⇒ ∠(CNM) = ∠(CMN) = (180o– ∠D )/2 = (180o – 108o)/2 = 36o

∠(ADN) + ∠(PNM) + ∠(CNM) = 180o

⇒ ∠(PNM) = 180o – (∠(ADN) + ∠(CNM) )

            =180o – (36o – 36o) = 108o

Δ BMR cân tại B

⇒ ∠(BMR) = ∠(BRM) = (180o– ∠B )/2 = (180o – 108o)/2 = 36o

∠(CMN) + ∠(BRM) + ∠(BMR) = 180o

⇒ ∠(NMR) = 180o – (∠(CMN) + ∠(BMR) )

            = 180o – (36o – 36o) = 108o

Δ ARQ cân tại A

⇒ ∠(ARQ) = ∠(AQR) = (180o– ∠A )/2 = (180o – 108o)/2 = 36o

∠(BRM) + ∠(MRQ) + ∠(ARQ) = 180o

⇒ ∠(MRQ) = 180o – (∠(BRM) + ∠(ARQ) )

            = 180o – (36o – 36o) = 108o

Δ QEP cân tại E

⇒ ∠(EQP) = ∠(EPQ) = (180o– ∠E )/2 = (180o – 108o)/2 = 36o

∠(AQR) + ∠(RQP) + ∠(EQP) = 180o

⇒ ∠(RQP) = 180o – (∠(AQR) + ∠(EQP) )

            = 180o – (36o – 36o) = 108o

∠(EQP) + ∠(QPN) + ∠(DPN) = 180o

⇒ ∠(QPN) = 180o – (∠(EPQ) + ∠(DPN) )

            = 180o – (36o – 36o) = 108

Suy ra : ∠(PNM) = ∠(NMR) = ∠(MRQ) = ∠(RQP) = ∠(QPN)

Vậy MNPQR là ngũ giác đều.

Trên tia đối của tia BA lấy điểm K sao cho BK = 1cm

Trên tia đối của tia CB lấy điểm L sao cho CL = 1cm

Trên tia đối của tia DC lấy điểm M sao cho MD = 1cm

Trên tia đối của tia AD lấy điểm N sao cho NA = 1cm

Chứng minh KLMN là hình vuông

Lời giải:

Hình thoi và chữ nhật có phải là đa giác đều không vì sao

Xét ΔANK và ΔBKL :

AN = BK (gt)

∠A = ∠B = 90o

AK = BL (vì AB = BC, BK = CL)

Do đó ΔANK = ΔBKL (c.g.c)

⇒ NK = KL (1)

Xét ΔBKL và ΔCLM:

BK = CL (gt)

∠B = ∠C = 90o

BL = CM (vì BC = CD, CL = DM)

Do đó: ΔBKL = ΔCLM (c.g.c)

⇒ KL = LM (2)

Xét ΔCLM và ΔDMN :

CL = DM (gt)

∠C = ∠D = 90o

CM = DN (vì CD = DA, DM = AN)

Do đó: ΔCLM = ΔDMN (c.g.c)

⇒ LM = MN (3)

Từ (1), (2) và (3) ⇒ NK = KL = LM = MN

Tứ giác MNKL là hình thoi

ΔANK = ΔBKL ⇒ ∠(ANK) = ∠(BKL)

Trong tam giác ANK có A là góc vuông ⇒ ∠(ANK) + ∠(AKN) = 90o

⇒∠(BKL) + ∠(AKN) = 90o hay ∠(NKL) = 90o

Vậy tứ giác MNKL là hình vuông.